Jonathan Crabbé
Jonathan Crabbé
Home
Posts
Projects
Talks
Publications
Contact
CV
Light
Dark
Automatic
Latent Representation
TANGOS: Regularizing Tabular Neural Networks through Gradient Orthogonalization and Specialization
We introduce TANGOS, a regularization method that orthogonalizes the gradient attribution of neurons to improve the generalization of deep neural networks on tabular data.
Alan Jeffares
,
Tennison Liu
,
Jonathan Crabbé
,
Fergus Imrie
,
Mihaela van der Schaar
PDF
Cite
Code
Project
Concept Activation Regions: A Generalized Framework For Concept-Based Explanations
We extend existing feature and example importance methods to unsupervised learning.
Jonathan Crabbé
,
Mihaela van der Schaar
PDF
Cite
Code
Project
Project
Video
Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular data
We introduce Data-IQ, a data-centric framework to identify ambiguous examples.
Nabeel Seedat
,
Jonathan Crabbé
,
Ioana Bica
,
Mihaela van der Schaar
PDF
Cite
Code
Project
Label-Free Explainability for Unsupervised Models
We extend existing feature and example importance methods to unsupervised learning.
Jonathan Crabbé
,
Mihaela van der Schaar
PDF
Cite
Code
Project
Project
Video
Data-SUITE: Data-centric identification of in-distribution incongruous examples
We introduce Data-SUITE, a data-centric framework to identify incongruous examples.
Nabeel Seedat
,
Jonathan Crabbé
,
Mihaela van der Schaar
PDF
Cite
Project
Latent Density Models for Uncertainty Categorization
We introduce DAUX, an interpretability framework to interpret model uncertainty.
Hao Sun
,
Boris van Breugel
,
Jonathan Crabbé
,
Nabeel Seedat
,
Mihaela van der Schaar
PDF
Cite
Project
Project
Poster
Explaining Latent Representations with a Corpus of Examples
We introduce SimplEx, a case-based reasoning explanation method that permits to decompose latent representations with a corpus of example.
Jonathan Crabbé
,
Zhaozhi Qian
,
Fergus Imrie
,
Mihaela van der Schaar
PDF
Cite
Code
Project
Video
Cite
×